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Abstract
The interaction energies of hcp and fcc helium are calculated by using a many-
body expansion and cluster approach. The two- to six-body contributions
are evaluated based on numerical solution of the Schrödinger equation for
N-atomic clusters in the frame of the Born–Oppenheimer approximation.
The convergence of the many-body expansion and its truncation position are
discussed for the molar volume from 8.4 to 1.744 cm3 mol−1. It indicates
that the five-body interactions become manifest at volume smaller than
3.0 cm3 mol−1, providing negative correction to the potential energy; while
the six-body interactions emerge at volume smaller than 2.3 cm3 mol−1, with
positive correction. With the use of the Einstein approximation for the zero-
point contribution, the calculated 0 K equation of state is given up to 180 GPa
and compared with measurements.

1. Introduction

Although the helium atom is one of the simplest atoms in the periodic table of elements, its
solid phase equation of state (EOS) has not been well understood up to now [1, 2]. Obtaining
a satisfactory theoretical description for its compression behaviour at high pressures is both
a long-standing problem and a worthwhile objective, because of its quantum nature and the
astrophysical relevance [3, 4]. Currently, the interaction between two isolated He atoms is
accurately known from precise ab initio calculations, the experimental virial coefficients, and
the viscosity of a dilute helium gas, etc, among which a famous form is the Aziz (HFDHE2) [5]
potential, that selects Hartree–Fock calculation for short-range repulsion and semi-empirical
dispersion coefficients for the long-range attraction. But the Aziz or some other two-body
potentials such as the recently proposed SAPT one [6, 7] are too stiff to match the observations
for solid helium [4, 8, 9]. The softening of the potential was attributed to the screening effects
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of neighbour atoms [10, 11]. An attempt has been made to use an effective pair potential,
i.e. the exponential-6 potential [12] obtained from fitting to shock-wave data, for explaining
the compressibility of solid helium. It is still too repulsive to give a good prediction at
pressure higher about 20 GPa [4]. In addition, the density function theory was applied to
solid helium [1, 13], which determines the electronic structure of the system and reflects the
symmetry of the crystal, thus including many-body interaction effects. Unfortunately, the
obtained results are not reliable at pressure lower than about 10 GPa [1, 13]. Moreover, the
band-structure calculation is a total-energy technique; it cannot directly illustrate the various
many-body contributions.

On the other hand, the use of many-body expansion of interaction energy is of great value
to describe the interatomic forces for crystalline properties. There are many reports on helium
trimers (He3) and two analytic fits for three-body interactions were proposed respectively by
Bruch and McGee (BM) [14, 15], and Cohen and Murell (CM) [16]. In the many-body
expansion, the two- and three-body contributions for solid helium could be evaluated using
their available analytic formulae [8, 17, 18]. However, a path integral Monte Carlo (PIMC)
simulation gave a much softer EOS than that obtained from the experimental data [8], implying
the higher-order terms in the many-body expansion to be included. At high densities of
experiments the short-range many-body interactions play a dominant role [10, 17, 18]. In
consideration that the helium atom has a simple electronic structure and its electrons are still
closely located at the nucleus even at very high compression, an atomic cluster method was put
forward in our previous works [19, 20]. It assumed that a many-body interaction of N atoms
in the crystal can be approximated by that of an isolated HeN cluster with the same lattice
geometry. By using the Hartree–Fock self-consistent-field (SCF) method, the short-range
interaction energies of various He4 clusters in helium lattices can be directly computed. The
five-body contribution was approximated by the difference between the total atomic potential
and its many-body expansion that is only extended to the four-body term [20]. In this work,
we show that this approximation is not applicable at very high densities, and a rule to evaluate
the truncation error of the many-body expansion is thus self-consistently proposed. According
to the quantum theoretical definition the five-body term is strictly computed. Moreover, the
convergence of the many-body expansion is investigated to the extent of molar volume of
1.744 cm3 mol−1, where the six-body contribution becomes manifest. Based on the many-body
expansion, an EOS at 0 K is suggested and compared with experiments.

2. Ab initio calculation of many-body contributions for solid helium

2.1. The method

As solid helium is compressed, the average interatomic distance is reduced. Each He atom
simultaneously interacts with a number of its surrounding neighbours. Here, we considered
one atom (labelled O) and its (n − 1) surrounding neighbours in a lattice. These n interacting
atoms form an Hen system. The interaction energy between the central atom O and its (n − 1)

neighbours is equal to the system energy difference by removing the central atom O from the
lattice position r0 to infinity, so the potential energy (labelled U ) of the atom O in the crystal
lattice can be expressed as [20]

U = En(r0, r1, . . . , rn−1) − [En−1(r1, . . . , rn−1) + E1] (1)

where 1, 2, 3, . . . , n−1 denote its nonidentical neighbours, and r1, r2, . . . , rn−1 are their actual
coordinations in a lattice, respectively. E1 is the ground-state energy of an isolated helium
atom, and En represents the ground-state energy of the system of Hen . If a sufficient number
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of neighbours are included the outside neighbour contributions can be neglected due to the
many-body screening effects. Thus U would approach the exact potential energy of atom O in
the crystal lattice. These n atoms can be looked on as a simple molecule with a closed-shell
electronic structure and n He+ nuclei. Based on the Born–Oppenheimer approximation we
can write its Schrödinger equation, and the ground-state energy can be obtained by the SCF
method. The calculations were performed by the Gamess program [23]. A 6311G basis set is
selected for each He atom, and the energy converges to 10−8 Hartree/molecule in the restricted
Hartree–Fock calculation.

The interaction energy U of atom O with its neighbours can be developed in a many-body
expansion:

U =
∑

n−1�i�1

u2(O, i) +
∑

n−1� j>i�1

u3(O, i, j) +
∑

n−1�k> j>i�1

u4(O, i, j, k)

+
∑

n−1�l>k> j>i�1

u5(O, i, j, k, l)

+
∑

n−1�m>l>k> j>i�1

u6(O, i, j, k, l, m) · · · (2)

= U2 + U3 + U4 + U5 + U6 + · · · (3)

where i, j, k, l, m denote its different neighbours, (n − 1) is the total number of considered
neighbours, and the summations extend over all considered neighbours in the system. U2

represents the total two-body interaction energy of atom O with its neighbours, U3 the total
three-body contribution of atom O with its neighbour, U4 the total four-body contribution of
atom O with its neighbour, and so on. A two-body interaction between central atom O and one
of its neighbours i can be expressed as

u2(O, i) = E2(r0, ri ) − 2E1 (4)

where E2(r0, ri ) is the ground-state energy of the composite system of atom O and its
neighbour i . A three-body interaction u3(O, i, j) between the atom O and its two arbitrary
neighbours i, j is defined by

u3(O, i, j) = [E3(r0, ri , r j ) − 3E1] − [u2(O, i) + u2(O, j) + u2(i, j)]
= [E3(r0, ri , r j ) − 3E1] − U(2, 3) (5)

where U(M, N) (M < N) denotes the total M-body interactions in the composite system of
cluster HeN . A four-body interaction u4(O, i, j, k) between four atoms in cluster He4, formed
by the atom O and its three arbitrary neighbours (i.e. i , j and k), is evaluated by subtracting all
the three-body interactions U(3, 4) and all two-body interactions U(2, 4) from the interaction
energy of the He4 cluster

u4(O, i, j, k) = [E4(r0, ri , r j , rk) − 4E1] − U(3, 4) − U(2, 4). (6)

Analogously, u5(O, i, j, k, l) and u6(O, i, j, k, l, m) can be written respectively as

u5(O, i, j, k, l) = [E5(r0, ri , r j , rk, rl) − 5E1] − U(4, 5) − U(3, 5) − U(2, 5) (7)

and

u6(O, i, j, k, l, m) = [E6(r0, ri , r j , rk, rl , rm) − 6E1]
− U(5, 6) − U(4, 6) − U(3, 6) − U(2, 6). (8)

In all cases, the atoms in the cluster are located at their positions the same as those in the
lattice. Consequently the cohesive energy per atom Es due to the SCF contribution is

Es = 1
2 U2 + 1

3 U3 + 1
4 U4 + 1

5 U5 + 1
6 U6 + · · · . (9)
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Figure 1. Atomic potential in hcp phase and its many-body expansion approximations. (a) R =
2.4 Å, (b) R = 2.1 Å, (c) R = 1.75 Å, (d) R = 1.6 Å.

Here 1
N UN denotes the N-body interaction contributions to the cohesive energy per atom. It is

noted that the applicability of equations (3) and (9) is based on the assumption that the many-
body expansion is convergent. We will check whether this assumption is rational in the next
section.

2.2. The convergence and truncating position of the many-body expansion at different densities

Below ∼12 GPa and ∼15 K, solid He crystallized in hcp structure [2, 4, 9, 24]. With increasing
temperature an fcc phase is stabilized from ∼15 K and ∼0.1 GPa to ∼285 K and ∼12 GPa.
Apart from this small stability region, the hcp phase remains stable up to 58 GPa [4]. The recent
density function theoretical results also predicted that the hcp structure is the most stable low-
temperature phase of He at pressures up to 100–200 GPa [1]. In this study, our calculations are
performed on hcp structure in the whole interesting compression range, while on fcc structure
only in the relevant low pressure region. From equation (1), we can evaluate the interaction
energy, U , for an atom in the lattice. According to equation (2), the atomic potential U can
be expanded in a many-body interaction series. We let the sum of the many-body contribution
terms on the right-hand side of equation (3) be written as

SN =
N∑

i=2

Ui (N = 2, 3, 4, 5, 6, . . .). (10)

For a given N if SN /U approaches unity then the terms behind UN in equation (3) can
be truncated. Figure 1 shows that the potential energy U of an atom in hcp structure
converges rapidly, and its many-body expansion terms also approach a stable value when
several neighbour shells are considered. Figure 1 also gives the comparison of U with its
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approximation SN at several nearest-neighbour distances, R, for hcp helium. Figure 1(a)
demonstrates that at R = 2.4 Å (V = 5.887 cm3 mol−1) the two-body term U2 overestimates
the value of U , but it would be approximated by S3, whereas at a smaller distance of R =
2.1 Å (V = 3.944 cm3 mol−1) the sum of S3 is lower than U , but it would be approximated by
S4 (see figure 1(b)). Also, figure 1(c) indicates that at R = 1.75 Å or V = 2.282 cm3 mol−1 the
sum of S3 and S4 is either lower or higher than U , but it is well approximated by S5, whereas at
R = 1.6 Å (V = 1.744 cm3 mol−1) S6 is in good agreement with U accompanied by a higher
S4 and a lower S5.

The calculated data are listed in table 1, in which the last columns give the ratio of
SN to U at different distances. It shows the absolute values of Ui obey the relation of
|U2| > |U3| > |U4| > |U5| > |U6|, with the sign of U3 and U5 being negative and the
others being positive. It should be noted although the three-body interactions for some selected
He3 clusters (the isosceles triangular geometries, the included angle θ between the equal sides
in the range 30◦–180◦) were computed [14, 22], being negative for θ < 120◦ and positive for
θ = 150◦ and 180◦, the properties of solid helium are dependent on the total contribution of all
three-body effects in a lattice rather than the individual one. Our calculations indicate that the
total three-body contribution U3 from a large number of different geometries of He3 is negative
for close-packed solid helium, and the total five-body contribution U5 has the same sign as that
of the three-body term, whereas the total two-, four-, and six-body contributions are repulsive.
It also shows for hcp helium at R = 2.7 Å (V = 8.4 cm3 mol−1) that the two-body contribution
is adequate to satisfactorily describe the atomic potential, i.e. S2/U = 102.7%; however,
the higher-term contributions become manifest with decreasing distance. For example, at
R = 2.6–2.3 Å or V = 7.5–5.2 cm3 mol−1, truncating the many-body expansion after the
three-body term would give a good approximation for U , with a truncation error less than 2%.
In the range of 2.2–2.0 Å or 4.5–3.0 cm3 mol−1, the sum of S4 would well represent the atomic
potential with a uncertainty less than 2%. At the volume below 3.0 cm3 mol−1 the four-body
corrections lead to an excessive stiffening of the potential energy and the effect of five-body
interactions is necessary to be included to offset the excessive repulsive effect arising from the
four-body term. Truncating the expansion after the five-body term would work well from 1.9 to
1.75 Å or from 3.0 to 2.3 cm3 mol−1, but for even smaller volume this S5 approximation fails
to give a good result. For example, it provides 88% (S5/U ) atomic potential at R = 1.65 Å or
V = 1.913 cm3 mol−1, whereas adding the six-body contribution could improve the agreement
up to 98.7% (S6/U ). The fcc structure calculation gives nearly the same results as those of the
hcp case at the same studied distance.

In order to validate the results we obtained, the total short-range two-body interaction
energy U2 and three-body one U3 are compared with those computed from the repulsion of
Aziz and SAPT potentials, and the three-body exchange part of BM and CM potentials for
hcp helium, given in figure 2. It can be seen that the present two-body term locates between
Aziz and SAPT calculations at small distances, and approaches the latter at large distances.
For the three-body term, the agreement between the present result and those of BM and CM
are excellent over the entire studied region. It implies that the present many-body calculation
would be reliable in the following studies.

3. Equation of state

At zero temperature the pressure of solid helium consists of static and zero-point vibration
contributions, written as [25]

P = PST(V ) + PZP(V ) (11)
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Table 1. Atomic potential energy and its many-body expansion in hcp/fcc He. The number L of neighbour shells used for calculation is given
in the fourth column.

R V U U2 U3 U4 U5 U6

Phase (Å) (cm3 mol−1) L (K) (K) (K) (K) (K) (K) S2/U S3/U S4/U S5/U S6/U

1.6 1.744 3 29 723.4 50 634.6 −39 895.1 31 355.9 −18 335.6 6835.5 1.704 0.361 1.416 0.799 1.029
2 29 300.4 50 558.3 −39 458.1 29 615.2 −16 747.7 6302.6
1 28 030.7 49 292.6 −32 646.2 16 470.8 −7 007.2 2 289.5

1.65 1.913 3 24 475.8 40 630.1 −29 458.7 20 954.6 −10 581.6 2613.7 1.660 0.456 1.313 0.880 0.987
2 24 162.8 40 581.0 −29 184.8 19 857.4 −9 745.1 2532.0
1 23 280.5 39 672.2 −24 413.3 11 182.3 −4 115.5 989.5

1.7 2.092 3 20 145.3 32 569.3 −21 674.1 13 898.2 −5961.2 648.3 1.617 0.541 1.231 0.935 0.967
1.75 2.282 3 16 571.3 26 082.1 −15 887.0 9 141.3 −3 253.0 1.574 0.615 1.167 0.971
1.8 2.483 3 13 621.9 20 867.5 −11 600.1 5 956.9 −1 698.6 1.532 0.680 1.118 0.993

hcp 1.85 2.696 3 11 188.3 16 680.5 −8 435.9 3 841.3 −828.7 1.491 0.737 1.080 1.006
1.9 2.921 3 9 180.6 13 322.1 −6 108.9 2 447.0 −358.0 1.451 0.786 1.052 1.013
2.0 3.047 3 6 159.8 8 475.1 −3 160.0 949.0 1.376 0.863 1.017

2 6 127.3 8 476.0 −3 158.5 913.9
1 6 080.3 8 409.3 −2 851.0 564.3

2.1 3.944 3 4 109.6 5 371.8 −1 599.7 335.5 1.307 0.918 1.000
2 4 094.5 5 372.9 −1 601.7 324.2
1 4 078.1 5 348.5 −1 480.1 208.1

2.2 4.534 2 2 715.0 3 390.1 −789.5 96.0 1.249 0.958 0.993
2.3 5.181 2 1 783.4 2 125.6 −373.7 1.192 0.982
2.4 5.887 2 1 155.9 1 321.0 −166.1 1.143 0.999
2.5 6.653 2 738.5 810.1 −66.1 1.097 1.007
2.6 7.484 2 459.9 487.1 −20.8 1.059 1.014
2.7 8.381 2 276.9 284.3 1.027 1.019

2.1 3.944 2 4 094.9 5 372.9 −1 600.5 324.9 1.312 0.921 1.001
2.2 4.543 2 2 715.1 3 390.1 −788.8 96.1 1.249 0.958 0.993
2.3 5.181 2 1 798.8 2 123.2 −359.3 1.180 0.981

fcc 2.4 5.887 2 1 157.1 1 321.0 −166.0 1.142 0.998
2.5 6.653 2 738.1 810.1 −66.1 1.098 1.008
2.6 7.484 2 459.9 487.1 −20.8 1.059 1.014
2.7 8.381 2 276.9 284.3 1.027
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Figure 2. Comparisons among the short-range two- and three-body interaction calculations for hcp
helium.

where PST is the static pressure, and PZP the zero-point vibration pressure. PST can be deduced
from the volume differentiation of the static energy

PST = −dEST

dV
(12)

where EST is the total cohesive energy per atom, which is usually expressed as a sum of the
SCF and correlation energies [26], i.e.

EST = Es + Ec. (13)

In our approach only Es has been given by a many-body expansion obtained from the SCF
calculation. For the correlation contribution Ec, we use a pairwise standard van-der-Waals
form [5] φ(ri ) with semi-empirically determined dispersion coefficients c6, c8, and c10 to
describe

Ec = 1
2

∑

i

φ(ri ) (14)

where

φ(ri ) = −
(

c6

x6
i

+ c8

x8
i

+ c10

x10
i

)
F(xi ) (15)

and

F(xi) =





exp

[
−

(
D

xi
− 1

)2
]

(x < D)

1 (x � D)

(16)

where xi = ri/rm , and ri is the distance between the central atom and the i th neighbours. D
and rm are constants, having D = 1.28 and rm = 2.9673 Å from [5].

The zero-point pressure PZP could be calculated from the Einstein approximation and Mie–
Grüneisen model [25]

PZP = γ

V

3

2
h̄ω(V ) (17)
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Figure 3. Zero-point vibration pressure of solid helium.

Figure 4. Comparison between theoretical and experimental equations of state for solid He. (a) The
circles, triangles and diamonds represent the 0 K isotherms deduced from measurements. (b) The
filled squares represent the 300 K experimental isotherm which is given by the Vinet EOS in [21].

where γ is the Grüneisen parameter, defined as γ = −d ln ω/d ln V , ω(V ) is the average
vibration frequency of an atom around its equilibrium position, which is a function of molar
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Table 2. The 0 K isothermal EOS of solid 4He.

Volume P2B P2B+3B P2B+3B+4B P2B+···+5B P2B+···+6B

(cm3 mol−1) (GPa) (GPa) (GPa) (GPa) (GPa)

1.744 289.8 79.7 244.7 142.8 178.9
1.913 216.9 70.6 176.7 117.3 136.4
2.092 162.8 61.1 128.8 95.0 104.4
2.282 122.2 52.0 94.7 76.0 80.2
2.483 92.2 43.5 70.2 60.3 61.7
2.619 77.2 38.6 58.1 51.7 52.2
2.696 69.9 36.0 52.4 47.4 47.6
2.833 58.9 31.8 43.9 40.8 40.6
2.921 52.9 29.4 39.4 37.1 36.8
3.012 47.5 27.1 35.3 33.7 33.3
3.281 35.0 21.4 26.0 25.5 25.1
3.422 30.0 18.9 22.4 22.1 21.8
3.588 25.2 16.4 18.9 18.8 18.6
3.680 23.0 15.2 17.2 17.2 17.0
3.750 21.4 14.3 16.1 16.1 16.0
3.857 19.2 13.1 14.5 14.6 14.5
3.944 17.7 12.2 13.4 13.5 13.4
4.051 16.0 11.2 12.2 12.2 12.2
4.110 15.1 10.7 11.5 11.6 11.6
4.170 14.3 10.2 10.9 11.0 11.0
4.534 10.3 7.6 8.0 8.1 8.1
5.181 6.0 4.8 4.9 4.9 4.9
5.887 3.5 3.0 3.0 3.0 3.0
7.484 1.3 1.2 1.2 1.2 1.2

volume. For a given volume ω can be approximately derived from the change of atomic
potential when the atom moves away from its equilibrium position while its neighbours are
frozen at their lattice site. For solid helium, its zero-point contribution is important. In figure 3,
the present PZP estimation, from equation (17), is compared with that of Driessen et al [27],
which was deduced from the Debye approximation and at V � 2.5 cm3 mol−1. The agreement
between these two estimations is obvious at rather low densities. The maximum difference
of ∼2 GPa happens at V = 2.5 cm3 mol−1, which is reasonable when compared to the
corresponding total pressure of ∼60 GPa in this case; see figure 4(a).

Combining equations (11)–(17), several 0 K isothermal EOSs can be calculated from the
many-body expansion using from two- to six-body terms respectively; see table 2. These
calculations are compared with available experimental data shown in figure 4. It can be seen
that the two-body term is only applicable for rather lower pressure, and more-body interaction
terms are required to extend the applicable pressure range. Quantitatively, incorporation of
three-body interactions can extend the applicable pressure up to ∼8 GPa, further adding four-
body interactions up to ∼30 GPa. Moreover, use of the five-body term would reproduce the
measurements up to ∼80 GPa. Figure 4(b) shows the effect of the six-body term would be
important at higher pressures, considering that the isothermal curve becomes much stiffer than
that of five-body interactions. Moreover, the compressibility measurements of solid helium up
to 130 GPa [21] can be better interpreted when the six-body contribution is taken into account.
A Vinet function can be used to represent the present isothermal EOS at 0 K within 5%, giving
the results of V0 = 23.72 cm3 mol−1, and K0 = 0.0079 GPa, and K ′

0 = 9.83 over the volume
regime 1.744–7.0 cm3 mol−1.
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4. Summary

An investigation of five- and six-body effects in highly compressed solid 4He is conducted
based on a many-body expansion of interaction energy. The two- to six-body terms in the
expansion are calculated from 8.4 to 1.744 cm3 mol−1 by using the SCF method and atomic
cluster technique, in which the configurations of atom clusters are chosen as the same as those
in the actual lattice. Moreover, an independent theoretical rule to evaluate the truncation error
of the many-body expansion is self-consistently set up. This work shows the many-body
expansion of interaction energy is an useful tool to understand the high-pressure behaviours
of solid helium over a wide compression range, i.e. from a low-density region where two-
body interactions play a dominant role to a high-density region where higher-order many-body
effects prevail. The calculations indicate that at volume below 3.0 cm3 mol−1 the five-body
interactions become manifest and provide negative correction. However, at volume below
2.3 cm3 mol−1 the six-body interaction contribution appears and is necessary to be included
to offset the excessive softening effect arising from five-body interactions. The compression
behaviour of solid helium for the pressure from 1 to 180 GPa is described.
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